If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+78x+144=0
a = 7; b = 78; c = +144;
Δ = b2-4ac
Δ = 782-4·7·144
Δ = 2052
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2052}=\sqrt{36*57}=\sqrt{36}*\sqrt{57}=6\sqrt{57}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(78)-6\sqrt{57}}{2*7}=\frac{-78-6\sqrt{57}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(78)+6\sqrt{57}}{2*7}=\frac{-78+6\sqrt{57}}{14} $
| 3s^2+18s+20=0 | | 4-(3x-5)=6-(2x-17) | | 2(3x+1)-4x=16x= | | 2(3x+1)-4x=16x=¨ | | 4x+3=18–2x. | | -5.4-7.8x=78.4 | | F(6)=1/12x+14 | | F(6)=1/2x+14 | | 1,6x-(x-2,8)=(0,2x+1,5)-0,7 | | x4+6=12 | | |2y+5|=4 | | (2)=5x+14 | | (5/6x+1/4)+(1/4x+5/6)=180 | | 12-(4x-18)=(36+4x)+(18-6) | | 4x=2x-6= | | 12-(4x-18)=(36+4x)+18-6) | | 30-5/3x=2+3x | | 1/4x+5/6=180 | | 10-1/2x=3 | | 0,5x=5 | | 2x=5=0 | | 23+x=16+2x | | 4y-13=33y= | | 5(2m+3)=34 | | x+30÷x=11 | | 3x+12=2(x+11) | | 3+2/x=4x | | X+31/x=11 | | 2(x+9)=4(x+2) | | 4x-18=x+2 | | 120=2,5^3*x | | 6(7-x)+x=46=x |